Germanium, Silica & Titanium Lend Stability to 3D Printing Optical Glass

In the recently published ‘Sol-Gel Based Nanoparticles for 3D Printing of Optical Glass,’ Peter Palencia and Koroush Sasan of Lawrence Livermore National Laboratory are innovating further in the realm of high-performance optics, using 3D printing and printable titanium-germanium-silica inks made from colloidal sol-gel feed stocks.

Although glass is such a valuable material to scientists attempting to transmit, refract, and reflect light, Palencia and Sasan point out the many challenges in using it for work like theirs. For this study, they focused on a ternary formulation of core-shell SiO2 nanoparticles coated with a TiO2 shell and GeO2 nanoparticles that could be used as a feedstock for direct ink writing (DIW) lenses.

“At the atomic level, the refractive index of glass can be adjusted to a certain value based on the composition of oxides within the glass. For example, sodium oxide and titanium oxide can be added to the glass to increase the refractive index,” explain the authors. “However, the introduction of the different dopants into the glass create potential problems as they not only drastically change the optical properties of the glass, but also its thermodynamic stability and overall viability to form a transparent glass.”

With additive manufacturing processes, a new and ‘revolutionary approach’ allows for the creation of a wide range of materials, whether researchers are using cells in tissue engineering or printing with resin.

“Although these methods have seen success in the production of other materials, a robust method to 3D print an optical lens has not been developed,” stated the authors.

Bubbles are a typical challenge—resulting in stress, which then causes cracking. Other methods have not been fully researched—such as glass created via UV curable ink. In previous research by the authors, however, using fumed silica, they had some success but still found it to be ‘an inconsistent mixture that affects all aspects of the glass.’ It tends to cluster together too, creating pieces too large for extrusion. Here, the researchers found a solution in eschewing fumed silica and replacing it with sol-gel based silica nanoparticles. It can be used for direct ink writing:

“Its transparency, refractive index, and coefficient of thermal expansion is comparable to a commercial lens,” stated the authors.

The authors found that to create functional optical glass, they had to rely on a combination of germanium, silica, and titanium. The dopants (germanium oxide and titanium oxide) caused an increase in the refractive index, while still upholding functionality and performance.

In contrast to the previous use of silica inks, the new mixture promoted stability, while great care still had to be taken during heating to avoid stress cracks.

The preparation of GeO2-SiO2-TiO2 consists of four main stages

“By varying the concentration of GeO2 and TiO2, we tested the viability of glass in terms of transparency and printability,” concluded the researchers. “The glass was transparent up to 7 mol% TiO2 and 14 mol% GeO2. Also, a higher colloidal stability of the glass could be seen through the zeta potential of the nanoparticles.

“While these glasses are not completely crack-free, a range of temperatures were identified as cause of cracking. Experiments to optimize ternary glass through the addition of surfactants and to reduce cracking during heat treatment are ongoing.”

3D printing is often used in optics, from micro-optics to 3D laser lithography, to embedded geometrics. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Sol-Gel Based Nanoparticles for 3D Printing of Optical Glass’]

 

The post Germanium, Silica & Titanium Lend Stability to 3D Printing Optical Glass appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

132 Replies to “Germanium, Silica & Titanium Lend Stability to 3D Printing Optical Glass”

  1. Pingback: Research
  2. Pingback: 안전놀이터
  3. Pingback: Sofia
  4. Pingback: Phim 18 Han Quoc
  5. Pingback: 토토사이트
  6. Pingback: situs poker online
  7. Pingback: Kingpen Vape
  8. Pingback: Buy viagra
  9. Pingback: order cialis
  10. Pingback: canada pharmacy
  11. Pingback: Buy cialis online
  12. Pingback: vardenafil canada
  13. Pingback: levitra pills
  14. Pingback: levitra 10mg
  15. Pingback: gambling games
  16. Pingback: cheapest viagra
  17. Pingback: tadalafil reviews
  18. Pingback: installment loans
  19. Pingback: viagra cost
  20. Pingback: 5 mg cialis
  21. Pingback: 20 cialis
  22. Pingback: 20 cialis
  23. Pingback: buy weed online
  24. Pingback: cialis 20
  25. Pingback: live draw sgp
  26. Pingback: 출장오피
  27. Pingback: sildenafil viagra
  28. Pingback: real casino
  29. Pingback: online casino
  30. Pingback: slot machines
  31. Pingback: free slots online
  32. Pingback: free viagra
  33. Pingback: Legal CBD Oil
  34. Pingback: buy viagra online
  35. Pingback: generic cialis
  36. Pingback: brand viagra
  37. Pingback: buy viagra
  38. Pingback: real casino
  39. Pingback: generic cialis usa
  40. Pingback: cialis generic
  41. Pingback: lm360.us
  42. Pingback: viagra generic
  43. Pingback: cialis 20mg
  44. Pingback: cheap viagra
  45. Pingback: cialis soft gels
  46. Pingback: cialis vs viagra
  47. Pingback: online casino usa
  48. Pingback: Viagra pfizer
  49. Pingback: cbd oil benefits
  50. Pingback: cialis lethargy
  51. Pingback: shelf life viagra
  52. Pingback: Click Here
  53. Pingback: sildenafil prices
  54. Pingback: clindamycin cheap
  55. Pingback: ksbtofbh
  56. Pingback: cialis soft tablet
  57. Pingback: cialis 20mg usa
  58. Pingback: tamsulosin uk
  59. Pingback: how cialis works
  60. Pingback: propranolol price
  61. Pingback: lamotrigine pills
  62. Pingback: furosemide otc

Comments are closed.