Stratasys & DSM Venturing Lead $12 Million Round in Support of Inkbit  

Stratasys and DSM Venturing (venture capital arm of Royal DSM) lead the way in yet more financing for startups, acting as the major sources of funding support of $12 million total, in an equity round for Inkbit—the 2017 spinout of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT. Headquartered in Medford, MA, Inkbit’s technology is based on research led by Professor Wojciech Matusik which has evolved into a vision-based, AI additive manufacturing platform.

“As pioneers of jetting-based additive manufacturing solutions, we are excited to help Inkbit bring their technology to the factory floor. Vision-based feedback control and artificial intelligence will take additive manufacturing to a whole new level and will help to enable its widespread use for production,” said Ronen Lebi, Vice President of Corporate Development at Stratasys.

Up until this point, a lack of technology in the form of inkjet 3D printers has held back many innovators seeking superior performance—and this means improving reliability, accuracy, and the need for planarization. Known as the company that created the first 3D printer offering vision-based feedback control and artificial intelligence, Inkbit technology is unique due to the inclusion of machine vision and machine learning.

The first 3D printer created by Inkbit. (Image: Inkbit)

 “We are excited to partner with such an extraordinary team of industry-leading players and impressed by their entrepreneurial spirit and commitment to innovation,” said Davide Marini, Inkbit cofounder and CEO.

“The composition of this syndicate was chosen to maximize the speed of development and commercialization of our platform, with each investor bringing to us their unique expertise in equipment manufacturing, high-performance materials and applications in robotics, medical devices and life sciences tools. Our value proposition to customers is simple: we are adding a layer of machine vision and machine learning to material jetting, increasing its accuracy, reliability and enabling its use with production-grade materials.”

With this latest infusion of cash, Inkbit plans to industrialize their AM system further by:

  • Integrating multi-material and volume manufacturing requirements
  • Expanding the set of materials for medical, life sciences, and robotics applications
  • Installing the first units for customers

Currently the Inkbit team is working with customers like Johnson & Johnson in an early access program, with a release date of 2021 set for select customers.

“Materials always play a major role in industrializing breakthrough technologies and in additive manufacturing they become absolutely critical. We are delighted to have Inkbit in our investment portfolio and look forward to helping them develop the best materials for customers world-wide,” said Pieter Wolters, Managing Director of DSM Venturing.

This round of funding included Ocado3M and Saint-Gobain, following on the heels of their previous and initial $2.8M round led by IMA. Inkbit is also funded by the Defense Advanced Research Projects Agency (DARPA), the National Science Foundation and MassVentures.

Inkbit has also been in the news previously for working with companies like Johnson & Johnson, in early access programs, as well as gaining industry respect for their development of artificial intelligence products. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source: press release]

The post Stratasys & DSM Venturing Lead $12 Million Round in Support of Inkbit   appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

ROBOZE introduces amorphous SABIC EXTEM filament for ARGO 3D printer

Italian 3D printer manufacturer ROBOZE has introduced a new amorphous thermoplastic polyamide filament for its ARGO production 3D printers. Named EXTEM™ AMHH811F, the material has made in collaboration with global chemicals producer SABIC. The new filament is highly heat resistant and flame-retardant, and is, in some cases, intended to replace metals in extreme applications. Keith Cox, […]

MIT CSAIL startup Inkbit raises $12M in Stratasys and DSM Venturing led funding round

Award winning 3D printer OEM Stratasys and DSM Venturing, the venture capital arm of Royal DSM, have led a $12 million funding round for Massachusetts-based startup Inkbit. Founded in 2017 as a spinout of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT, Inkbit has developed a multimaterial inkjet 3D printer. In addition to Stratasys and […]

Researchers Assess the Use of 3D Printing Geo-Polymer Concrete

In the recently published ‘Life Cycle Assessment of 3D Printing Geo-polymer Concrete: An Ex-ante Study,’ authors Yue Yao, Mingming Hu, Francesco Di Maio, and Stefano Cucurachi examine the development of geo-polymers in concrete, and delve further into the use of 3D printing within the construction industry.

With the environment in mind, the authors are assessing the efficacy of using 3D printing and geo-polymers to replace conventional manufacturing methods with conventional materials like Portland cement. Environmental performance was evaluated through an ex-ante life cycle assessment (LCA), with manufacturer data used to pinpoint items for improvement and ‘scaled-up scenarios’ created in partnership with the company as the researchers looked into areas for improvement.

Contribution analysis on climate change.

Waste reduction is high on the list of benefits in terms of 3D printing in construction and with cement, and while geo-polymer could have even higher environmental impacts than ordinary concrete, the study shows that with multiple improvements, it could reduce the carbon footprint. The researchers were able to achieve this by lowering the amount of silicate in geo-polymer ‘recipes.’

Previous studies show that 3D printed buildings are higher in efficiency, lower in emissions, produce less waste, and consume less energy. Ex-ante LCA helps the researchers here evaluate the merits of fabricating a GP concrete object through inkjet 3D printing.

“Aiming at combining environmental management and technology development, in close-collaboration with technology developers, the study shows that ex-ante LCA can not only estimate the potential environmental impacts, but, more importantly, provide directions for the future deployment of 3DPG technology from the current lab-scale experiment,” state the researchers.

There were still some facets of the suggested improvements, however, that would be difficult to integrate in the near future:

“The technology readiness level (TRL; Moorhouse, 2002) of the 3DGP concrete technology in this research is estimated to be 6, which is already on technology demonstration stage,” stated the researchers. “This would suggest using LCA even at an earlier stage of the TRL trajectory to guarantee a greater support of technological innovation, when the core components of a technology are more flexible to change.”

The technology being explored is emerging—just like the accompanying market—but the researchers state that it is also reasonably complex. The researchers worked with technology developers in relation to the following potential for the future:

  • Technological landscape
  • Market penetration
  • Commercial data
  • Overall feasibility

The researchers also created numerous scenarios, including those titled ‘what ifs.’

“To generate ‘what-if’ scenarios, hotspots analysis is performed and then four scenarios are developed based on improved hotspots, using the hotspots as building blocks. Thus, hotspots analysis be a structured method to develop scaled-up scenarios in ex-ante LCA studies. For the application of the framework of the ex-ante LCA methodology to other technological systems, additional scenario types and generating methods need to be considered as additional case studies and methodological contributions become available,” stated the researchers.

LCA helps researchers and analysts gain insight into environmental performance, as well as highlighting possible challenges, early on. The authors described this study as going from ‘cradle to gate’ as they analyzed the three stages of the 3DGP concrete system:

  • Raw materials
  • Transport
  • 3DGP concrete manufacturing

The summary of research processes (Adapted from Villares et al., 2017)

The details of four scenarios used in this study.

Overall, the researchers were concerned with some ‘discrepancies’ regarding 3D printing, attributed to the variances between raw materials, combined with different hardware. Silicate, however, stood out as offering ‘considerable impacts’ on the manufacturing process, and better results.

“The current study setup excludes the use-phase and end-of-life phase for both technology systems. While the environmental impacts of 3DGP concrete and ordinary concrete in the use phase are similar, the collection, treatment, and potential recycling ratio of these two alternatives may be different after utilization,” concluded the researchers.

“3DGP concrete does not have an advantage over ordinary concrete from the perspective of the transportation of raw materials. For ordinary concrete, the supply of raw materials operates at full commercial scale, due to the mature nature of the market. The transportation distances of raw materials are not long for ordinary concrete. These aspects do leave still little room for improvements and rationalization in the use of resources.”

The flowchart of 3D printing geo-polymer (3DGP) concrete

3D printing in the construction industry and with concrete is becoming more common as industrialists realize the enormous advantages, experimenting with reinforcing spatial structures, examining parameters in 3D printed concrete, even 3D printing self-healing capsules for cement.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Life Cycle Assessment of 3D Printing Geo-polymer Concrete: An Ex-ante Study’]

The post Researchers Assess the Use of 3D Printing Geo-Polymer Concrete appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Formlabs Tells Us How to Make Good Looking 3D Printed Dentures

More than 36 million Americans do not have any teeth, and 120 million people in the US are missing at least one tooth. With these numbers expected to grow in the next two decades, the market for 3D printed dentures is expected to grow significantly.

Sam Wainwright, Dental Product Manager at Formlabs, suggested during the company’s latest webinar that he wouldn’t “be surprised to see 40% of dentures in America made with 3D printing,” claiming that it makes sense “at the technology level because there is no loss of material.” The expert delved into some of the techniques that have proven to work for aesthetically better 3D printed dentures. The webinar, titled Can 3D printed dentures look good?, offered dentists, technicians, and anyone interested in using 3D printing to improve dentures, tips on how to cut material costs by up to 80% (compared to traditional denture cards and acrylic); perform fewer steps to attain high-quality results, and overall prevent teeth from looking unnatural. 

“This is an ever expanding market with many options. 3D printed dentures are a very new thing, especially for removable prosthetics (something that has never been digitalized) so it is going to take some time for labs, dentists and patients to become used to it. The material is indicated for long term use but the most rapid adoption of this technology will be immediate conversion and provisional dentures, which have lower risk allowing dental professionals to walk not run into this new technology. We also expect the resins to get better, stronger and more aesthetic in time,” said Wainwright.

In fact, in the last year, Formlabs has already managed to upgrade the resins it sells for medical professionals to make oral prostheses, called Digital Dentures. These new FDA-approved resins not only resemble traditional dentures but they are also cheaper than other options. At $299 for the denture base resin and $399 for the teeth resin, the company estimates that the total resin cost for a maxillary denture is $7.20. Moreover, Formlabs also recently released the new Form 3 printer, which uses light touch supports: meaning post-processing just became much easier. Support removal is going to be quicker on the Form 3 than the Form 2, which translates to fewer materials costs and time.

“We are trying to prevent teeth from looking unnatural, and sometimes with these 3D printed dentures, the aesthetics are really suffering from it. We like to think that dentures should have life-like gingiva, natural cervical margins, individual looking-teeth, and be easy to assemble,” Wainright said.

The general basic workflow proposed by Wainright is to follow the traditional workflow until the final models are poured and articulated with wax rim, that set-up needs to be made digital with a desktop dental 3D scanner allowing for the digital design in any open CAD dental system, followed by 3D printing the base and teeth, and finally post-processing, assembling and finishing the piece. 

“After making so many parts, printing a ton of denture teeth and bases, and assembling them, we’ve come up with three techniques for an aesthetic 3D printed denture. What we want is to avoid some of the outcomes of today’s digital dentures, like products with an opaque base or gingiva, which is a bit of a mess in my opinion. Or you come about a semi transluscent base which leaves the roots exposed, and lastly when you use the splinted tooth workflow you can end up with a bulky interproximal connection. And since the papillae are a really thin printed parts, it’s really easy to see the teeth connecting, looking unnatural.”

The three aesthetic denture techniques suggested by Wainwright include:

  1. Natural gingival connection and cervical margin are based on the CAD output for optimal result
  2. Splinted arch ease of assembly without a bulky interproximal
  3. Life-like gingiva, inspired by “Brazilian Dentures”

Wainright suggests that for his first aesthetic dental technique, users can control the depth of penetration of the tooth as well as the angle it comes in or goes out, by using a new function in the 3Shape Dental System CAD software (version 2018+). The option is called coupling mechanism, and gives the user much more control than before, something which comes in very handy considering that “the more subgingival length the tooth has, the stronger the bond is with the base.” 

“The reason why 3D printed dentures are different than traditionally made dentures is that resins for the base and the teeth are like cousins. When the parts come out of the printer and you wash them, they are almost soft and even sticky, because they are only partially cured, between 25 and 35 percent. But during the final UV curing process, the tooth and the base become one solid part.”

In fact, the dentures specialist indicates that users should cure the combined base and teeth with a handheld UV cure light, moving towards the interior, just to really hold the parts together. Once the user has checked that all the cavities have been filled up and removes any residual base resin, the denture is complete and ready to be submerged for 30 minutes in glycerine at 80 degrees celsius, for a total hour of cure time. At that point, the piece can be finished up with a UV glaze or wheel for a high shine polish.

The second recommended aesthetic denture technique involves a splinted arch ease of assembly without a bulky interproximal.

Wainright explained that he sets up “these cases up in CAD so they are 100% splinted together because it is so much easier to have consistent placement of teeth, instead of doing it one by one which can be labor-intensive. I first export the arch splinted, but the question here is how to make the connection between the teeth interproximally look natural, especially when you have a very thin papilla. So before assembly, during our support removal part of the process, we’ll take a cutting disk and reduce the interproximal connection down from the cervical margin up towards the incisal. This really helps the aesthetics of the denture without worrying about any spaces.”

He also recommends that during the assembly process, users can easily brush in gingiva resin in the spaces to make sure there is no air, gaps or voids, maintaining the strength.

“Keep your eye out for bubbles,” repeated Wainright many times, explaining that “if you do minimal interaction to get the resin in the spaces, it really reduces the bubbles.”

He also added that the key is to “flow in more resin at first, instead of just wetting it, and when it’s squeezed together it will flow into that area. Finally, the overflow can be wiped away with a gloved finger.” 

“It seems quite simple but this are the things we learn over time. I repeated many of these processes a handful of times and got better, today it may take me up to 10 minutes at the most to finish up one denture. Moreover, if you think about the soft touch supports in the Form 3, post processing will be even easier, as anyone will be able to rip them off and add very little finishing to the product.”

For the last aesthetic denture technique, Wainwright suggested following up the “Brazilian dentures” example, which offers an inspiring way to create life-like gingiva. He says he noticed Brazilians have become experts in creating dentures, adding translucent resins in the base that allow for the patient’s own gingiva color to show through. He proposed the LP resin Formlabs resin is also quite translucent, but when tested on a model or patient’s mouth, “it adds a nice depth to the gingiva itself giving a reflection of light useful in aesthetics.”

“When the denture is seated intraorally, the patient’s natural gingiva shows through making the prosthetic come to life.”

Formlabs is known for creating reliable, accessible 3D printing systems for professionals. According to the company, in the last decade, the dental market has become a huge part of the company’s business and that Formlabs is trusted by dental industry leaders across the globe, “offering over 75 support and service staff and more than 150 engineers.” 

It has shipped over 50,000 printers around the world, with tens of thousands of dental professionals using Form 2 to improve the lives of hundreds of thousands of patients. Additionally, using their materials and printers in more than 175,000 surgeries, 35,000 splints and 1,750,000 3D printed dental parts. One of the aims at Formlabs is to expand the access to digital fabrication, so anyone can make anything, this is one of the reasons why the company is making webinars, to help everyone get there.

Wainright also revealed that Formlabs will be releasing two new denture bases, RP (reddish pink) and DP (dark pink), as well as two new denture teeth shapes, A3 and B2, that will complement the already existing A1, A2, A3.5, and B1. 

If you are a big fan of webinars, make sure to check out more at 3DPrint.com’s webinars under the Training section.

Discuss this article and more on 3DPrintBoard.com or comment below to tell us what you think.

[Images: Formlabs]

The post Formlabs Tells Us How to Make Good Looking 3D Printed Dentures appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Is This the Best Way to Manually Post-Process an FDM 3D Printed Part?

Researchers Jinjin LiuHai GuBin LiLu ZhuJie Jiang, and Jie Zhang from the Nantong Institute of Technology and Jiangsu Key Laboratory of 3D Printing Equipment and Application published a paper, titled “Research on Artificial Post-Treatment Technology of FDM Forming Parts,’ about using manual post-processing on 3D printed parts made with FDM technology, which has a low molding accuracy that can cause stair-stepping.

“Due to the “step effect”, the printed parts have rough surface, obvious stripes, poor surface quality, and cannot meet the customer’s or specified requirements, so post-processing is very important. This paper mainly studies and summarizes the manual post-processing technology of FDM printed parts, and provides the specific implementation method of post-processing, providing reference for the post-processing of FDM formed parts and other forming processes,” the researchers wrote.

Figure 2. The vase model.

In order to “further improve the surface quality and strength” of 3D printed models, post-processing is often necessary. Some of the more common methods of post-processing FDM formed parts include:

  • Chemical treatment with organic solvent
  • Heat treatment
  • Mechanical treatment with a sander or grinder
  • Surface coating treatment

In this paper, the researchers focused on a manual post-treatment process, which requires several items to work properly, such as a spray pen air pump with air storage tank, a coloring pen and tool set, gloves, a mask, water-diluted solvent in a solvent bottle, quick dry small fill soil, 80 to 3000 mesh sandpaper, a cleaning agent, a file, and others.

The team fabricated a post-treatment vase model as an example, using PLA material and an Einstart 3D printer. Once the vase was printed, they removed the plate with the model on it from the printer.

Figure 4. Model finished printing. Figure 5. Demolition of support.

“…the model is smoothly removed from the bottom plate with a shovel, and then to check whether there is strain concentration model, relatively weak parts with small first stripping knife to spin out the model and the support, and then has a long nose pliers clamping a direction support, applying a constant force, the location of the tiny support can use the file to remove,” they wrote.

To clean up a rough surface, the researchers noted that you can use low mesh sandpaper to sand and polish it. The model and the low mesh sandpaper should be immersed in water and sanded along the model’s texture, as this can both extend the sandpaper’s life and smooth out the model’s surface.

Then, they moved on to a technique called quick dry small fill, which involves the addition of a small amount of filling material to gaps in the model; then, the fill is evenly daubed with a hard scraper.

Figure 7. Apply small patch of soil evenly. Figure 8. Polished to make it smooth.

“Then wait for 30 seconds, after filling soil has hardened, using 1200 mesh to 1500 mesh sandpaper in, as shown in figure 8, If there are still tiny grooves and repeat the above steps,” the researchers wrote. “To be in addition to the groove after no large-area fill soil, feel smooth, can proceed to the next step.”

The next step is spray can water fill soil spraying. First, the model’s surface should be washed with water, and then the spray pot is used to fill the soil, before the model is wiped with a non-woven cloth and sprayed at “the ventilated position,” keeping the nozzle at about 20 cm and uniformly spraying the model one to three times, quickly.

“Generally, choose gray spray pot water to fill the soil, because gray is a neutral color,” the team explained.

Figure 10. High mesh sandpaper grinding.

Once the water is sprayed and the soil is filled, air drying takes place. Then, 2000-3000 high-mesh sandpaper is applied for “slight grinding” along one direction, before moving on to the coloring phase.

The 3D printed, polished and processed model should first be washed and dried before pigments are applied. A spray gun can be used to add either a base color or one that covers a large area of the model; you’ll need a 1:2 ratio of diluent to pigment for spraying, and you should be able to adjust the amount of air injection while you’re spraying.

“Brushes of different thicknesses and sizes can be used to paint the details,” the team wrote. “It is accessible to use 00000 pens to paint the detailed parts of the figures, or use different widths of the cover tape to cover and then spray the spray gun to paint.”

Once the paint and spray paint have dried completely, you can uniformly spray protective paint on the model; the research team used B603 water-based extinction for their 3D printed vase.

The team shared a few more notes on making the post-treatment process run smoothly, such as the importance of using software to reduce the amount of unnecessary support structures, coating the print plate with a thin layer of glue to prevent deformation, and observing the model while it’s being printed.

Figure 13. The vase is finished after processing.

“Secondly, in the manual post-processing should look to the protection work, grinding water mill is the best way to model processing, be patient, 80-2500 mesh, use each mesh sandpaper required time from long to short, low mesh sandpaper grinding along the texture of the model, high mesh sandpaper grinding should be turned around,” the researchers concluded. “When mixing colors, you should understand in advance the relationship between light and shade, brightness and purity of various colors, warm and cold color selection, etc.”

They noted that “the degree of difficulty” for post-processing methods, and the methods themselves, can vary with different 3D printing technologies – what works for FDM may not necessarily work for SLA, and so on.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

The post Is This the Best Way to Manually Post-Process an FDM 3D Printed Part? appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AnelleO: 3D Printing to Create Devices for HIV Prevention, Birth Control and Infertility

Women and girls are disproportionately affected by the HIV/AIDS epidemic, comprising more than half of the estimated 37.9 million people living with the disease. Moreover, according to United Nations AIDS, some regions of the world, like sub-Saharan Africa, have an even higher burden, with women and girls constituting over 57% of the affected population, compared to 52% worldwide. With an unwavering increase of the disease along with antiretroviral treatments that can only help control the virus, not kill it, preventing HIV infection is essential. Researchers have been investigating for many years the use of intravaginal rings (IVRs) as devices for the delivery of agents to protect against the sexual transmission of HIV and other diseases, as well as to prevent unwanted pregnancies. At the University of North Carolina (UNC) at Chapel Hill’s Eshelman School of Pharmacy, professor Rahima Benhabbour has been passionately developing innovative technologies to improve health conditions for women. Using 3D printing technology and her startup company AnelleO, she is quickly creating a breakthrough IVR that will be more efficient in drug delivery and can be customized to women’s needs.

Benhabbour recently said that watching the CEO and founder of Carbon, Joseph DeSimone, demonstrating how his 3D printer worked during a TED talk, made her wonder how she could apply the technology to IVRs. Soon after, she established her own company to print intricate features on customizable devices that could help women worldwide.

“I’m from North Africa. I’m a woman. The thought of helping women–some that don’t have a way of protecting themselves or controlling their lives–that’s my ultimate passion. It’s a dream for me to give back,” said Benhabbour, also an assistant professor at the UNC/NC State Joint Department of Biomedical Engineering.

Benhabbour has been featured on Innovate Carolina (a team working closely with a network of university partners to turn novel ideas into economic and social value), for her use of 3D printing technology to prevent HIV infections and other health conditions in women. Since launching her AnelleO in 2016, Behnhabbour has been working on the first product, AnelleO PRO, a once-a-month progesterone-releasing ring for infertility and assisted reproductive technology. The ultimate goal of AnelleO is to create a more efficient drug delivery that can be customized to women and their individual needs since current technology for intervaginal rings is a one-size-fits-all product.

AnelleO PRO, the first intravaginal ring for infertility, aims to develop and test biocompatible 3D printed IVRs for the mechanical and release properties of a model drug called β-estradiol, then translate these methods to the target drug, progesterone. Benhabbour is using a novel 3D printing platform, driven by the proprietary Continuous liquid interface production or CLIP process, pioneered by Carbon. She also applies CAD software for specifying shapes and geometry, which is recreated via a photopolymerization process. AnelleO PRO IVRs are fabricated with CLIP using a biocompatible resin and takes just 15 minutes to print each ring.

According to Innovate Carolina, current products approved for progesterone supplementation are limited to messy and unpleasant vaginal gels or inserts and painful intramuscular injections that have to be administered daily. While AnelleO PRO could safely and steadily release progesterone over an extended duration, with the potential to replace current therapies and impact millions of women.

“Unlike traditional technology, 3D printing gives us the ability and engineering to play around with the design and properties of a product. We can engineer parts that would not have been possible before,” she suggested back in September. “The main goal of developing this 3D technology is to have the ability to change the ways in which women’s products are manufactured and designed. And the applications for the technology are endless – including prevention of HIV, sexually transmitted infections and unintended pregnancies.”

On a similar note, the National Institutes of Health (NIH) reported last July that another research open-label study of women in southern and eastern Africa, using a vaginal ring that is inserted once a month and slowly releases an antiviral drug, was estimated to reduce the risk of HIV by 39%. IVRs are quickly gaining prominence. However, Benhabbour’s idea to use 3D printing to develop them could be even more innovative than all the others, especially considering that the technology helps to cut down costs, print on-site, and would just require technical expertise to run the machines. This means that in regions where it would take longer to receive the IVRs–due to logistics or high costs–specialists could actually print them within minutes for patients. In the end, it all translates to saving lives, reducing risks, and improving existing health conditions for women and girls.

Rahima Benhabbour at the lab

Originally, the Chapel Hill UNC spin-off company received the KickStart Venture Services Commercialization Award, which is part of Innovate Carolina’s campus-wide effort to translate discoveries made in Carolina’s academic laboratories into products and services that can benefit people both in the local vicinity and around the world.

Benhabbour suggested that “KickStart Venture Services gave us a ‘kickstart.’ You may have an idea, but no funding and KickStart helps make connections and gets things moving, while serving as an ongoing resource. The main hurdle has been to find business leads. KickStart helps faculty launch and carry their startups, because we’re too busy in our academic lives to be the lead of a company. We need that support with the business know-how. That support has been tremendous.”

A critical source of funding came from the Eshelman Institute for Innovation (EII) at the Eshelman School of Pharmacy. In this case, EII provided a $200,000 grant titled “Fabrication of Geometrically Complex Intravaginal Rings by Continuous Liquid Interface Production (CLIP) 3D Printing Technology” that helped Benhabbour initially create the technology. Such financial backing, along with the additional entrepreneurial support from EII, in partnership with KickStart and the broader Innovate Carolina team, bolstered Benhabbour’s early efforts to bring her concept to life.

The bioscience company, headquartered in North Carolina’s UNC at Chapel Hill, is quickly developing drug delivery technologies with uses in potential end markets including devices, reproductive systems, cancers, and other neoplasms. AnelleO also got a lot of help from the UNC Office of Technology Commercialization team (another part of the Innovate Carolina initiative) in helping with guidance on patents and licensing, not a minor issue when it comes to innovation. Her lab is packed with more than seven scientists, most of them women, something she is particularly proud of.

According to the expert, its not always easy for faculty members to pursue their big idea, yet she offers encouraging advice: “It’s hard for an academic, you always have questions. What I’ve learned is that if you have an idea, put it out there and talk to multiple people. Get it out there, and see what the potential is for your idea as opposed to looking at the hurdles. Instead of looking at how something won’t work, just think of what it can be.”

As a big part of her mission for innovation in science, Benhabbour has also been working on a seven-year research along with colleagues at Chapel Hill, to develop the first-ever injectable implant for HIV. The long-lasting treatment and prevention technology has been tested in animals and would make an enhanced injectable drug implant that is ultra-long-acting and can merge various drugs, while also dealing with a number of hurdles encountered with present HIV prevention and treatment techniques.

Benhabbour’s novel approach along with her ongoing interest and concern to help people with life sciences has led to innovative solutions that could stop life-threatening diseases and overall improve women’s lives. She moves away from traditional forms of drug administration, leading the way with her vision to incorporate the latest technologies to her up and coming lab efforts and new company. We expect to hear more about Benhabbour and her one-of-a-kind 3D printed IVRs.

Rahima Benhabbour and her team

[Images: Innovate Carolina, UNC at Chapel Hill]

The post AnelleO: 3D Printing to Create Devices for HIV Prevention, Birth Control and Infertility appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printed Doctor Doom Mask

A really cool looking Doctor Doom mask via Chanlou on Thingiverse

I printed it in one piece. Anycubic I3 Mega. With support “everywhere”. Printer: Anycubic I3 Mega. Infill 15%.
Took around 30h to print.The size is just perfect (for me) I didn’t skale anything.
What a great mask.

Read more.

Make Your Own Face Tracking Camera #celebratephotography

Great project (and fantastically perfect/unnerving build inspiration) from Little_french_kev on Hackster.io:

The camera moves using two servos driven by an Arduino Uno. The camera is plugged to a computer where a software tries to find faces in the images received from the camera.

Read more and see more on YouTube


Photofooter

We #celebratephotography here at Adafruit every Saturday. From photographers of all levels to projects you have made or those that inspire you to make, we’re on it! Got a tip? Well, send it in!

If you’re interested in making your own project and need some gear, we’ve got you covered. Be sure to check out our Raspberry Pi accessories and our DIY cameras.

Interview with Aaron Breuer, the CEO of SelfCAD

With perhaps only ten to twenty million people being proficient in CAD we can maintain that everyone could or should 3D print but the reality is that this isn’t in our hands. 3D modeling and CAD software let people design for 3D printing and if they are still too complex or take thousands of hours to master then the pool of available people that can really fully use 3D printing will always be limited. There are a number of easy 3D modeling tools out there that make the learning curve less steep and are entry-level alternatives that get you closer to making your ideas, faster one of these is SelfCAD. We know SelfCAD’s CEO Aaron Breuer well because he teaches the 3D modeling component of our 3D printing classes. We thought it high time that we interviewed him to find out more about SelfCAD.

What is SelfCAD? For who is it intended?

SelfCAD is an easy to use fully-featured online 3D modeling and slicing software. It enables users to model, sculpt and slice all under a single platform. SelfCAD is intended for Do It Yourself people and hobbyists. That is, those who design 3D models as a hobby and those own a 3D printer and design models for 3D printing.

Why should I get it?

The future of manufacturing is 3D printing and in the near future people will be able to design their own 3D models and 3D print them, and hence this is the right time for one to get into it.

What are some of its features?

SelfCAD is a fully functional CAD application because everything that one can do with professional CAD software can be done in SelfCAD too.

SelfCAD has several unique features that allow both novice and professional users to create simple and complex designs. For example, the Image generator that converts any type of Image into a 3D model. There is also the magic fix tool that automatically fixes your model to make it printable. SelfCAD also has an in-built slicer for slicing the model to prepare it for any FDM printer. Now we are working directly with other 3D printing companies in order to add more new interesting versions of 3D printing.

In addition to its unique tools, there are also standard CAD features like the technical drawing and sketching tools which are easier to use to enable users to explore their imagination and design abilities. There are also artistic features like the Sculpting tools that are easier to use.

How many people are working on SelfCAD?

20+.

Where do you hope to be in five years?

In a few years to come, we hope that most people with 3D printers will be using SelfCAD because they can design any type of 3D model and slice it too.

How do you make money?

SelfCAD is software as a service. We have a monthly and yearly subscription but we are far less expensive than our competitors.

How is SelfCAD optimized for 3D printing?

SelfCAD is an online program, hence users can share and collaborate on the cloud with others with ease. Secondly, everything created in SelfCAD is printable, whether it’s a model imported into SelfCAD or designed from scratch, the magic fix tool prepares the model for 3D printing.
There is also an in-built Slicer that generates the G-Code of the model after designing it without leaving the software. So from start to finish, one doesn’t need any additional software as one can design, customize and slice in a single program.

What does the education version include?

We give a 65% discount to the educators and it includes the same features as the paid version.

Why is it so easy to use?

SelfCAD has a simplified user-friendly interface that is simple to work with and one can master easily. It has also been designed in a way that the number of tools is less when compared to other programs, and these tools are reusable. That is, one can use the same tool to do different things. This is because SelfCAD was created by creative minds and brilliant UX designers who put a lot of emphasis on the usability of the program and hence they consolidated many similar tools.
There are also video tutorials and instructable guides that help the beginners to master SelfCAD in just a few days.
It has also been created in a way that makes it’s easy to work with basic shapes, unique designs, innovative concepts, and both simple and complex designs.

What’s it like competing with Autodesk and other huge companies?

Our main goal is not to compete with anyone, rather, we focus on providing a program for all people, both beginners, and professionals that will solve their design and slicing challenges. The users who have been struggling to create 3D models in other professional software can now get started easily in SelfCAD without taking months of designing. So generally our joy is to see people creating useful things and 3D printing them. Additionally, we are also working with schools directly to make 3D designing easy for them.

Who would you like to partner with?

We would like to partner with everyone, more so those who won’t our development resources. So far we have partnered with some 3D printing companies and schools and we look forward to more partnerships in the future.

Discuss this article and more on the 3DPrintBoard or comment below to tell us what you think.

The post Interview with Aaron Breuer, the CEO of SelfCAD appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.