10 Ways 3D Printing Played a Part in Education in 2018

3D printing is often used in education these days, whether it’s being taught as a subject or used to enhance another one. As we’re moving ever closer to the start of a new year, we decided to save you some time and gather the ten best education stories from 2018 in one article.

Siemens STEM DAY

The Siemens Foundation focuses on philanthropic efforts in order to continue the advancement of STEM-related education and workforce development, and has invested millions of dollars for this cause in the US. In early 2018, the Siemens Foundation worked with Discovery Education to re-brand its annual Siemens Science Day into a program for more modern educational opportunities: Siemens STEM Day, which is an opportunity for US schools to promote STEM activities for both students and teachers. The program, which doesn’t actually happen on one specific day but is a promotion of STEM lessons and hands-on activities, is meant to be used by students in grades K-12, and offers multiple tools and resources to help reboot STEM curriculum.

New 3D Printing Educational Initiatives

[Image: 3D PARS]

In February, we provided a round-up of some of the many educational initiatives that were looking to provide adults with a deeper understanding of 3D printing. Included in this round-up was a new online course for professionals by MIT, new 3D printing courses from the Sharebot Academy program, and a joint two-day training course in additive manufacturing from German consulting firm Ampower and full service prototyping and 3D printing provider H & H. Additional educational initiatives shared in the round-up were 3DPrint.com’s own Additive Manufacturing with Metals Course.

learnbylayers Partnered with Kodak

In 2017, educator Philip Cotton launched an online 3D printing resource for teachers called learnbylayers that offers lesson plans, project ideas, assessments and more that were designed by teachers for teachers. The site grew quickly, and in February Cotton announced that it had reached a distribution agreement with Kodak. The learnbylayers educational curriculum was added to the Kodak 3D Printing Ecosystem, as the company began offering the internationally-taught curriculum along with its Portrait 3D printer’s launch.

Renishaw Deepened Its Commitment to 3D Printing Education

This spring, Renishaw announced that it would be deepening its commitment to 3D printing education. The company established a new Fabrication Development Centre (FDC) at its Miskin facility in South Wales, with the goal of inspiring young people to pursue STEM careers. The FDC has two classrooms, staffed by qualified teachers and Renishaw’s STEM ambassadors, that can be used for free by schools or groups of young people for lessons or workshops. The FDC was actually in use by Radyr Comprehensive School students long before it was officially launched by Andy Green, a driver for Bloodhound SSC, a 3D printing user and Renishaw partner which also devotes many resources to education about the technology.

Ultimaker Launched New 3D Printing Core Lessons for STEAM Education

Lesson 1: Coin Traps

In April, Ultimaker launched its new Ultimaker Core Lessons: STEAM Set for educators. Eight free lessons, published under a Creative Commons Attribution-ShareAlike 4.0 International License, are included in the set, which can help teachers in informal, K12, or Higher Ed classrooms incorporate 3D printing into their educational practices and STEAM curriculum. Some of the beginner lessons include 3D printing a coin trap, flashlight, and penny whistle, and can teach young students important skills like how to align objects, using symbols to communicate ideas, and how to effectively work together on creative projects.

PrintLab Teamed Up with CREATE Education Team

UK-based global 3D printing distributor and curriculum provider PrintLab partnered with UK 3D printing company CREATE Education, a collaborative platform that provides educators with free resources and support, in order to support schools all across the UK with 3D printing. Each company’s educational 3D printing offerings will be combined in this partnership so that UK schools can enjoy unlimited access to full 3D printing solutions for the classroom, which will be locally supported for life by CREATE. Multiple initiatives came out of this partnership to support teachers, like  3D printer loan schemes, funding advice and resources, special training and curriculum workshops, and new educational 3D printing bundles.

3Doodler Introduced New Educational Kits

3Doodler has long supported education, and often releases new STEM-centered educational packages, including its latest classroom product line: the 3Doodler Create+ EDU Learning Pack and 3Doodler Start EDU Learning Pack. Each pack, designed for and with teachers, was designed specially for classrooms from kindergarten to 12th grade and includes 6 or 12 3Doodler pens (Create or Start, depending on the package) and 600 or 1,200 strands of plastic, as well as other tech accessories, lesson plans, and classroom materials. Additionally, the company released its 3Doodler Create+ EDU Teacher Experience Kit and 3Doodler EDU Start Teacher Experience Kit, which are designed to be trial packs for teachers who are thinking about introducing the 3Doodler into their classrooms.

Robo Acquired MyStemKits

3D printer manufacturer Robo announced this summer that it had acquired Atlanta company MyStemKits, which provides the largest online library of STEM curriculum in the world. Thanks to this acquisition, Robo is now offering educational bundles that include its classroom-friendly 3D printers, a supply of filament, one-year subscriptions to MyStemKits, and additional professional development and online learning.

GE Additive’s Education Program Provided Five Universities with Metal 3D Printers

GE’s Additive Education Program (AEP) – a five-year, $10 million, two-part initiative to provide 3D printers to as many schools as possible – chose five universities this summer to receive an Mlab 200R from the program. 500 proposals were submitted for this round of the program, and GE Additive chose German’s Coburg University of Applied Sciences and Arts, Ireland’s University of Limerick, the Calhoun Community College in Alabama, the University of Illinois at Urbana-Champaign, and West Virginia University as the lucky winners.

3D Printing In Fashion Education

In a recently published paper, titled “Integration of 3 Dimensional Modeling and Printing into Fashion Design Curriculum: Opportunities and Challenges,” Nicole Eckerson and Li Zhao from the University of Missouri discussed whether 3D printing should be integrated into fashion design curriculum. The researchers noted that while 3D printing has been recognized as a major influence in the work of designers and engineers, educators in the fashion industry are facing a lack of time, resources, and knowledge to teach the technology to students. The two conducted semi-structured interviews with eight 3D printing industry  experts and academic professionals for their research, and came up with three distinct themes from their data about why 3D printing should be adopted, and taught, in fashion.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

KAIST Develop 3D Printed Batteries For Wearable Electronics

One of the technologies that researchers are scrambling to develop these days is wearable electronics. From MIT to Harvard, there have been many different conceptualisations floating around for this futuristic concept. Whatever the case, 3D printing usually plays a crucial role in providing the materials but a new joint project also shows its capacity to […]

The post KAIST Develop 3D Printed Batteries For Wearable Electronics appeared first on 3D Printing.

3D Printing Industry Review of the Year June 2018

Moving on to June 2018 – 3D printing strengthened its position in the automotive industry and we took on the Ocean’s 8 diamond heist. Within the 3D printing trifecta, materials started to take on a hold, and would continue to trend throughout trade shows and product announcements in the latter half of the year. Soft […]

3D Printing Industry Review of the Year May 2018

3D printing in May 2018 saw the launch of our second annual 3D Printing Industry Awards (2019 nominations now open) and marked the 10th Anniversary of the RepRap movement. In applications, some of the most popular articles included medical breakthroughs. We were also given the exclusive opportunity to see the latest machines coming to market. […]

Spiralized Prusa Tool Holder #3DPrinting #3DThursday

1f09f1dfa516705a55aa43f79bc7cc36 preview featured

hitchhiker4200 shared this project on Thingiverse!

Cleaning up the place in preparation for family and I decided my time would be best spent designing a tool holder for my Prusa. Then I would post the tool holder to Thingiverse and it would be five or six in the afternoon and… crud.

At any rate, many thanks to TheClarkJB for his original design. I have bent it to the will of the great and spiraled gods and I think they were pleased.. it’s so often hard to tell with them.

It has space for two pliers (think the Prusa supplied needle noses for size comparison) and six holes for allen wrenches and screw drivers. It fits right above the power supply and keeps your work space clean and free of clutter. One square meter down, and only 185 left to go, and it only took two hours!.. carry the one.. crud.

See more!


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

LED Strip Radial Diffuser #3DThursday #3DPrinting

D84a7338373614286dcafffd3ff54b73 preview featured

Shared by varind on Thingiverse:

Add some diffusion to your led strips with clear PLA. Print a “dome” and a “clip” then sandwich the LED on your strip.

B5f003aa51c6519acf80d37ed924fe0d preview featured

Download the files and learn more


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

Spool holder – spider web pattern #3DThursday #3DPrinting

0fbeac7ae2298af32b73a2dc0b8de2cb preview featured

Shared on Thingiverse:

This was my first design and print so I just ran the generic settings suggest in Cura.
The sides worked out perfectly but the cylinder cross member had some stringing affect on the bottom. I need to learn more and tweak the slicing settings. If you have any suggestions I would welcome any advice.

I designed the feet hole diameter to fit a 1/4 inch thread perfectly. I cut threads 114mm long and sawed a notch in the ends to use a flat head screw driver than just screwed them in. The sides are solid as a rock even when the cross member isn’t supporting the top.

E9437abeb08629a83cedb1888a0e5034 preview featured

Download the files and learn more


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

Multi-part Christmas Tree #3DPrinting #3DThursday

4cfb5874a0c6aa23ebd6ace9debe2071 preview featured

gallaghersart shared this project on Thingiverse!

**Edit update Dec 11th 2018 – Little goof, forgot to upload all the files to print different configs. And I found a small error that did not stop slicing or printing (gifts ribbons overlapped tree by a few mm. Version 30 has little over lap but less modes, version 34 has everything separated for you color mixing needs.

See more!


649-1
Every Thursday is #3dthursday here at Adafruit! The DIY 3D printing community has passion and dedication for making solid objects from digital models. Recently, we have noticed electronics projects integrated with 3D printed enclosures, brackets, and sculptures, so each Thursday we celebrate and highlight these bold pioneers!

Have you considered building a 3D project around an Arduino or other microcontroller? How about printing a bracket to mount your Raspberry Pi to the back of your HD monitor? And don’t forget the countless LED projects that are possible when you are modeling your projects in 3D!

Electro-Assisted 3D Bioprinting Method for Low-Concentration GelMA Microdroplets

While low-concentration gelatin methacryloyl (GelMA) is biocompatible with 3D bioprinted cell‐laden structures, because of its low viscosity it’s hard to stably make organoids, and even microdroplets, with the material. A team of researchers from Zhejiang University in China focused on fixing this problem in a recently published paper, titled “Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets.”

The abstract reads, “Here, a promising electro‐assisted bioprinting method is developed, which can print low‐concentration pure GelMA microdroplets with low cost, low cell damage, and high efficiency. With the help of electrostatic attraction, uniform GelMA microdroplets measuring about 100 μm are rapidly printed. Due to the application of lower external forces to separate the droplets, cell damage during printing is negligible, which often happens in piezoelectric or thermal inkjet bioprinting. Different printing states and effects of printing parameters (voltages, gas pressure, nozzle size, etc.) on microdroplet diameter are also investigated. The fundamental properties of low‐concentration GelMA microspheres are subsequently studied. The results show that the printed microspheres with 5% w/v GelMA can provide a suitable microenvironment for laden bone marrow stem cells. Finally, it is demonstrated that the printed microdroplets can be used in building microspheroidal organoids, in drug controlled release, and in 3D bioprinting as biobricks.”

They prepared a prepolymer solution by dissolving freeze-dried GelMA “in modified eagle medium (MEM) at a concentration of 5% (w/v) containing lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate (LAP) at a concentration of 0.5% (w/v),” and then filtering it for sterility, before measuring its viscosity.

Images of different printing states. A) Printing states around the nozzle. B) Continuous atomization in Taylor Jet printing state.

Compressed air was used to feed the bioink into the electro-assisted device.

“Additionally, for preventing the returning of the microdroplets resulting from the attraction of the metal ring, a metal plate connected with the high voltage was placed below the electro-assisted module,” the researchers wrote. “A petri dish with silicon oil was placed on the metal plate as a droplets receiver. The 405nm wavelength light was utilized for the crosslinking of GelMA.”

The team conducted several experiments with their bioink and electro-assisted bioprinting device, including using a high-speed camera, which was set at 1600fps, to examine the various printing states of low-concentration GelMA droplets near the nozzles under the electro-assisted procedure and evaluating the effect on GelMA microsphere size of electrospray parameters.

Confocal Fluorescent Microscopy and Scanning Electron Microscopy (SEM) were both used to complete a series of profile characterizations in order to check out the chemical and physical environment that had been set up by the microspheres. The researchers also analyzed the 5% (w/v) GelMA degradation profile, tested the GelMA bioink’s stress-strain curve, and analyzed the pore area of the 5% (w/v) GelMA material.

The testing of the GelMA’s stress-strain curve and degradation profile.

“The SEM images of the inner morphology were imported into ImageJ software and transformed into 8-bits gray scale images,” the researchers wrote. “Then, the pore areas of the gray scale images were analyzed. The area frequency distribution and the normal distribution data were calculated. After that, the data were plotted as the form of distribution histogram and normal distribution curve.”

The researchers also examined the potential for using their electro-assisted GelMA microspheres method in a variety of applications, such as cellular encapsulation, drug-controlled release, and 3D bioprinting. To set up a device for 3D inkjet bioprinting, the team used PLA material to fabricate a special fixture on an FDM 3D printer, which was then added to the electro-assisted printing device.

“The metal nozzle was fixed on the fixture and its tip was grounded. Below it, a metal plate was connected with the high voltage,” the researchers explained. “The GelMA bioink with fluorescent particles as above was placed in the syringe of the electro-assisted printing device.”

The confocal fluorescent microscopy images of BMSCs encapsulated in 5% (w/v) GelMA.

In order to examine the printability, the team set low gas pressure (0.5kPa) and high gas pressure (1.5kPa), and the microdroplets were extruded down onto filter paper below, which was exposed to 405 nm wavelength light for crosslinking and observed under the confocal fluorescence microscopy after printing was complete.

The team’s research showed that electro-assisted 3D bioprinting of low concentration GelMA microdroplets has a lot of potential in applications such as organoid building, drug delivery, and cell therapy.

Co-authors of the paper are Mingjun Xie, Qing Gao, Haiming Zhao, Jing Nie, Zhenliang Fu, Haoxuan Wang, Lulu Chen, Lei Shao, Jianzhong Fu, Zichen Chen, and Yong He.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

LLNL: Magnetically Responsive Metamaterials Instantly Stiffen 3D Printed Structures

Lawrence Livermore National Laboratory (LLNL) frequently does impressive work with 3D printing materials, including metamaterials. Now the lab has introduced a new class of metamaterial that can almost instantly respond and stiffen 3D printed structures when exposed to a magnetic field. LLNL calls the materials “field-responsive mechanical metamaterials” or FRMMs. They involve a viscous, magnetically responsive fluid that is injected into the hollow struts and beams of 3D printed lattices. Unlike other 4D printed materials, the FRMMs’ overall structure does not change. The fluid’s ferromagnetic particles located in the core of the beams form chains in response to the magnetic field, stiffening the fluid and the lattice structure. This happens in less than a second.

The research is documented in a paper entitled “Field responsive mechanical metamaterials.

“In this paper we really wanted to focus on the new concept of metamaterials with tunable properties, and even though it’s a little more of a manual fabrication process, it still highlights what can be done, and that’s what I think is really exciting,” said lead author Julie Jackson Mancini, an LLNL engineer who has worked on the project since 2014. “It’s been shown that through structure, metamaterials can create mechanical properties that sometimes don’t exist in nature or can be highly designed, but once you build the structure you’re stuck with those properties. A next evolution of these metamaterials is something that can adapt its mechanical properties in response to an external stimulus. Those exist, but they respond by changing shape or color and the time it takes to get a response can be on the order of minutes or hours. With our FRMM’s, the overall form doesn’t change and the response is very quick, which sets it apart from these other materials.”

The researchers injected a magnetorheological fluid into hollow lattice structures built on LLNL’s Large Area Projection Microstereolithography (LAPµSL) platform, which is capable of 3D printing objects with microscale features over wide areas using light and a photosensitive polymer resin. According to Mancini, the LAPµSL machine played a big role in the development of the new metamaterials, as the complex tubular structures needed to be manufactured with thin walls and be capable of keeping the fluid contained while withstanding the pressure generated during the infill process and the response to a magnetic field.

The stiffening of the fluid and, in turn, the 3D printed structures, is reversible and tunable by varying the strength of the applied magnetic field.

“What’s really important is it’s not just an on and off response, by adjusting the magnetic field strength applied we can get a wide range of mechanical properties,” Mancini said. “The idea of on-the-fly, remote tunability opens the door to a lot of applications.”

Those applications include impact absorption, such as automotive seats that have fluid-responsive metamaterials integrated inside of them along with sensors that can detect a crash. The seats would stiffen upon impact, possibly reducing whiplash. Other applications include helmets, neck braces, housing for optical components or soft robotics.

To predict how lattice structures would respond to an applied magnetic field, former LLNL researcher Mark Messner, who now works for Argonne National Laboratory, developed a model from single strut tests. Starting with a model he developed to predict the mechanical properties of non-tunable static lattice-structured materials, he added a representation of how magenetically responsive fluid affects a single lattice member under a magnetic field and incorporated the model of a single strut into designs for unit cells and lattices. He then calibrated the model to experiments Mancini performed on fluid-filled tubes similar to the struts in the lattices. The researchers used the model to optimize the topology of the lattice, finding the structures that would result in large changes in mechanical properties as the magnetic field was varied.

“We looked at elastic stiffness, but the model (or similar models) can be used to optimize different lattice structures for different sorts of goals,” Messner said. “The design space of possible lattice structures is huge, so the model and the optimization process helped us choose likely structures with favorable properties before (Mancini) printed, filled and tested the actual specimens, which is a lengthy process.”

Mancini began the work at the University of California, Davis under her adviser, materials and engineering professor Ken Loh, who is now at the University of California, San Diego. According to Loh, the concept was partially inspired by automotive-based suspension systems. They began by investigating ways to develop flexible armor that could morph or change its mechanical properties as needed.

“One of the criteria is to achieve fast response, and magnetic fields and MR materials offer that capability,” said Loh.

He also said that the researchers will explore new ways to develop a single-phase material, instead of having a liquid embedded in a solid, and higher performance-to-weight rations. Future work, he continued, “could lead to new technologies, such as flexible armor for the warfighter that stiffen instantaneously when a threat is detected.”

Authors of the paper include Julie A. Jackson, Mark C. Messner, Nikola A. Dudukovic, William L. Smith, Logan Bekker, Bryan Moran, Alexandra M. Golobic, Andrew J. Pascall, Eric B. Duoss, Kenneth J. Loh and Christopher M. Spadaccini.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.