Bioprinting 101 – Part 11, Tissue Engineering and Regenerative Medicine

Microscopic view of Tissue

I am glad to be running this series thus far. It seems that people are very interested with the subject matter, and I myself have learned even more as well. The series has discussed various technologies within bioprinting. We have also discussed a variety of bioprinting materials. We have barely even scratched the surface on topics we can talk about. In this article we are going to look into tissue engineering and regenerative medicine applications of 3D bioprinting.

Let us first define our terms of interest. Tissue engineering is the use of a combination of cells, engineering and materials methods, and suitable biochemical and physiochemical factors to improve or replace biological tissues. Tissue engineering involves the use of a tissue scaffolds for the formation of new viable tissue for a medical purpose. We have talked about the use of bioprinting scaffolds in order to create tissue layers for organs and other parts of the body. One must understand that as a bioengineer, most of the techniques used to create tissue is based on biomimicry. Biomimicry refers to the design and production of materials, structures, and systems that are modeled on biological entities and processes. We are limited in our scope due to the fact that biology is a complex system and it is difficult to mimic natural and living processes. 3D bioprinting is a tool that expedites biomimicry and allows us to create rapidly with synthetic resources.

What is needed to create a scaffold for tissue engineering purposes

Regenerative medicine and tissue engineering go hand in hand. We are looking to build materials that may have innate regenerative properties within our bodies. This is a process that is essential to living organisms – the ability to repair oneself after damage or trauma. Regenerative medicine is a branch of translational research in tissue engineering and molecular biology which deals with the “process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function”. Extracellular matrix materials are commercially available and are used in reconstructive surgery, treatment of chronic wounds, and some orthopedic surgeries. This is the future of medical care in many ways. Our understanding of the ECM and bioprinting is evolving, and technology is continuously improving. The future of ECM biomaterials in tissue engineering and regenerative medicine applications is promising. Progress in decellularization techniques and optimization of recellularization strategies will improve various aspects of an ECM scaffold and its ability to be regenerative. These traits include biocompatibility, endothelializa­tion, and functional anastomosis into the host vasculature.

Regenerative Medicine and 3D bioprinting

Endothelialization refers to the creation of endothelial tissue. Endothelial tissue refers to the tissue the layer of cells lining the inside of blood and lymph vessels, of the heart, and of some other closed cavities. Anastomosis a cross-connection between adjacent channels, tubes, fibers, or other parts of a network. These are major concerns when it comes to tissue engineering and regenerative medicine due to how we need to understand the need for biomimicry. We have to realize that it takes an absurd amount of precision to even build systems that replicate the inner structure of a vascular tissue layer. Then we have to think about how this will be self healing as well. This does not deter the development of this technology though as more people are intrigued by this subject matter on a daily basis.

3D bioprinting is an amazing step in the right direction, and there are companies, universities, and startups who are trying to be on the cutting edge of this field. The wealth of knowledge being created in this field is immense and frankly would intimidate people who are not aware of how vast the field is.

Now I believe the way for us to really delve deep within this series from now on is to start interviewing the leaders within this field. Due diligence will be done for the public to get more in depth understanding from industry experts. It is important to interview a variety of people within this field as no one necessarily is a specialist in this field. There seems to be a lot of cross pollination and multi skilled individuals.  It makes for a wide variety of knowledge to be learned within the field of biology, synthetic biology, biomimicry, biophysics, chemistry, biochemistry, biomaterials, material science, biomedical fields, and a bunch of other fields I have not had a chance to mention. I personally believe that the revolution of bioprinting is a bit early. There is just so much development from different places. It is difficult to see the best methods at the moment. I will try to interview others to gain more insight and build a repertoire of knowledge for all readers.

This article is part of a series that wishes to make bioprinting more accessible. It starts with bioprinting 101, Hydrogels, 3D Industrial Bioprinters, Alginate, Bioinks, Pluronics, Applications, Gelatin, and Decellularized Extracellular Matrices.

188 Replies to “Bioprinting 101 – Part 11, Tissue Engineering and Regenerative Medicine”

  1. Pingback: otc cialis
  2. Pingback: South Africa Music
  3. Pingback: prediksi togel
  4. Pingback: 업소사이트
  5. Pingback: cialis generic
  6. Pingback: sildenafil online
  7. Pingback: pala casino online
  8. Pingback: cash payday
  9. Pingback: payday loans
  10. Pingback: viagra cost
  11. Pingback: 20 cialis
  12. Pingback: LuckyCreek
  13. Pingback: cialis buy
  14. Pingback: rachele
  15. Pingback: slot machine
  16. Pingback: slots online
  17. Pingback: slot machines
  18. Pingback: buy replicas watch
  19. Pingback: viagra viagra
  20. Pingback: cialis tadalafil
  21. Pingback: catapres australia
  22. Pingback: best online casino
  23. Pingback: casino online usa
  24. Pingback: slot machines
  25. Pingback: gambling casino
  26. Pingback: gap insurance
  27. Pingback: accc car insurance
  28. Pingback: cialis
  29. Pingback: usa payday loans
  30. Pingback: cbd oil effects
  31. Pingback: buy levitra in uk
  32. Pingback: cleocin cheap
  33. Pingback: clomid 50mg coupon
  34. Pingback: Samples of viagra
  35. Pingback: clozaril cheap
  36. Pingback: colchicine prices
  37. Pingback: cheap combivent
  38. Pingback: where to buy coreg
  39. Pingback: cozaar tablet
  40. Pingback: cialis euros
  41. Pingback: diltiazem coupon
  42. Pingback: elavil tablet
  43. Pingback: hyzaar generic
  44. Pingback: buy cialis
  45. Pingback: how to buy imdur
  46. Pingback: imuran online
  47. Pingback: indocin generic
  48. Pingback: lopressor cheap
  49. Pingback: where to buy luvox
  50. Pingback: micardis usa
  51. Pingback: mobic prices
  52. Pingback: motrin cheap
  53. Pingback: prilosec cost
  54. Pingback: order zestril 10mg
  55. Pingback: click over here
  56. Pingback: zyprexa medication
  57. Pingback: order zyvox 600mg
  58. Pingback: sildenafil nz
  59. Pingback: furosemide otc
  60. Pingback: order fexofenadine
  61. Pingback: atomoxetine online
  62. Pingback: buspirone 5mg nz
  63. Pingback: clonidine online
  64. Pingback: clozapine price
  65. Pingback: warfarin pills
  66. Pingback: tolterodine pills
  67. Pingback: phenytoin prices
  68. Pingback: oxybutynin canada
  69. Pingback: glipizide 10 mg nz
  70. Pingback: buy cialis toronto
  71. Pingback: lamotrigine pills
  72. Pingback: buy cialis toronto
  73. Pingback: order clotrimazole

Comments are closed.